Generation and Fate of 1-Dewar-pyridin-3-olates and -2-olates. Synthesis of 1-Dewar-pyridin-3-ones *

Gerhard Maas*^a, Rainer Rahm^a, Fred Krebs^a, Manfred Regitz^a, Peter J. Stang^b, and Charles M. Crittell^b

Fachbereich Chemie, Universität Kaiserslautern^a, **Erwin-Schrodinger-StraSe,** W-6750 Kaiserslautern, F. R. G. **Chemistry** Department, The University **of** Utahb,

Salt Lake City, UT 84112, **U.S.A.**

Received January 14, 1991

Key Words: 1-Dewar-pyridines / 1-Dewar-pyridinones / Rearrangement, anionic

3-Oxy-l-azabicyclo(2.2.0]hexa-2,5-dienes ("3-oxy-1-Dewar-pyridines") **6a-d,** on cleavage of the enol ether or enol ester function, yield either **l-azabicyclo[2.2.0]hex-2-en-5-ones** ("1- Dewar-pyridin-3-ones") **9** or 2-azabicyclo[3.1.0] hex-2-en-4-ones

Out of the three possible Dewar-pyridinones **1-3,** only **1** and derivatives thereof have been synthesized by several routes^{$1-3$}). The most direct route to the molecular framework of **1,** photochemical isomerization of a 2-pyridinone, does not furnish a 1-Dewar-pyridin-2-one 2; similarly, isomerization of 3-hydroxypyridines to 1-Dewar-pyridin-3-

In a recent communication⁴, we have reported that cycloaddition of alkynyl esters and ethers *5* to 2,3,4-tri-tertbutylazete **(4)** yields 3-oxy-1-Dewar-pyridines 6 exclusively when disubstituted alkynes are used, whereas terminal alkynes $(5, R = H)$ lead to a mixture of 6 and the regioisomeric 2-oxy-I -Dewar-pyridine **7.**

The enol derivatives **6** and **7** appear to be ideal precursors of Dewar-pyridinones of type **2** and **3,** resp. In the following, we show that this strategy indeed leads to the molecular framework of **3,** but not of **2.** Furthermore, we report that under certain conditions intermediarily formed I-Dewarpyridin-3-olates undergo an unexpected and unprecedented rearrangement which ultimately yields 2-azabicyclo[3.1 *.O]* hex-2-en-4-ones.

Results

The results obtained with $6a-d$ are summarized in Scheme 1 and Table **1.** Ester cleavage of alkenyl benzoate

11, depending on the substituents and reaction conditions. Ester cleavage of **2-(benzoyloxy)-l-Dewar-pyridine ?a** with methyllithium does **not** furnish a l-Dewar-2-pyridinone, but **a** dimer thereof, namely the tricyclic compound **14.**

6a either **by** hydroxide or **by** methyllithium affords only the 1-Dewar-3-pyridinone derivative 9a. The identity of this novel heterocycle is established by the following spectroscopic data: The $\tilde{v}(C = O)$ vibration at 1775 cm⁻¹ indicates a cyclobutanone substructure. Although higher wave numbers of carbonyl stretching vibrations $(1805 - 1820 \text{ cm}^{-1})$ have been reported for monocyclic 3-azetidinones^{5,6}, the value for 9a agrees quite well with that of the alicyclic analogue (9a, C-CO₂tBu instead of N: 1765 cm^{-1 7)}. In the 13 C-NMR spectrum, chemical shifts of C-2 and C-3 are nearly the same as those of C-6 and C-5 in the precursor 6a, thus indicating that the azetine moiety has remained intact. The adjacent carbonyl group causes a low-field shift of 18.0 ppm for C-4 with respect to 6a. The C-6 methylene group, deshielded by two electronegative neighbors, appears in the expected region both in the ¹³C-NMR ($\delta = 67.7$) and in the ¹H-NMR spectrum ($\delta_A = 3.75$, $\delta_B = 3.91$, $|^{2}J| =$ 16.8 Hz).

Acidic hydrolysis of the **(tert-butyldimethylsilyl)** enol ether **6b** provides the substituted 1-Dewar-3-pyridinone 9b. Its NMR and IR spectra closely resemble those of 9a, taking into account the influence of the additional 6-phenyl substituent. Most importantly, δ (C-6) is now found at 80.5 and 6(6-H) at 5.18. Furthermore, the **'H-NMR** signals of the tBu groups appear at $\delta = 0.70, 1.22, 1.26$. The significant highfield shift of one of the tBu signals as compared to 9a (δ = 1.12, 1.20, 1.21) is explained by the $endo-6$ -phenyl substitution, which brings the tBu group at *C-2* in the shielding region of the aromatic ring. **A** similar observation has been made for **4,5,6-tri-tert-butyl-endo-2-phenyl-1-aza-3-oxabicy**made for 4,5,6-tri-tert-butyl-endo-2-phenyl-1-aza-3-oxabicy-
clo[2.2.0]hex-5-ene⁸⁾. The alternative assignment - an *exo*clo[2.2.0]hex-5-ene⁸. The alternative assignment - an *exo*-6-phenyl ring which would shield the 4-tBu group - is ruled out based on consideration **of** a molecular model; in this case, the two substituents, although in a 1,3-cis-relationship, point into opposite directions.

Not unexpectedly, the (triisopropylsilyl) enol ether **6c** cannot be cleaved with aqueous acid *9).* However, desilylation

succeeds with caesium fluoride. Surprisingly, not the expected 1-Dewar-3-pyridinone **9 b,** but the 2-azabicyclo- [3.1.0]hex-2-en-4-one **11 b** is isolated, the structure of which has been established by an X-ray structure analysis (Figure 1). Similarly, alkaline cleavage of alkenyl sulfonate **6d** leads to **llc,** the **l3C-NMR** spectrum of which is almost identical to that of **llb,** except for **6(C-6)** and the additional t Bu group (Table 2). The unusually high chemical shifts of the cyclopropyl carbon atoms in **llb** and **llc** are due to a considerable part to the great influence of a t Bu substituent $(\Delta \delta(\alpha) \approx +25 \text{ ppm}^{10})$ and, for C-6, to the deshielding β effect of the hetero π substituents at the three-membered ring.

Scheme 1. For reaction conditions, see Table **1**

Scheme 2

Ester cleavage of 2-(benzoy1oxy)-1 -Dewar-pyridine derivative **7a** with methyllithium does not furnish the expected 1-Dewar-pyridin-2-one **13** (Scheme 2). Instead, a product is isolated which, according to the mass spectrum, **is** a dimer of **13** and which has a strong IR absorption at 1648 cm-' located in the typical range of carboxamides. An X-ray

structure analysis has established structure **14** (Figure **2)** and thus confirmed the spectroscopic findings. The two fourmembered rings fused to the central perhydro-1,5-diazocine ring are *syn* to each other. Whereas the molecules has no twofold rotation axis in the crystalline state, a (time-averaged) symmetrical structure is indicated by the number of signals of the **NMR** spectra in solution. Formation of **14** is assumed to originate in a ring-opening reaction of the bicyclic enolate (or a-deprotonated carboxamide) **12,** leading to the anion of a (2-azetin-4-yl) ketene which then dimerizes.

Table 1. Cleavage of enol derivatives *6*

Enol	Reaction	Product	Yield	
	Derivative Conditions		[8]	
6a	KOH $(3 N)$, CH ₃ OH	9a	62	
	MeLi, THF, -78 ^O C	9a	60	
6b	HCl , $H2O$, acetone	פ9	58	
6с	$HC1$, $H2O$, acetone		no reaction	
	CSF, CH_3CN , CH_2Cl_2	11 _b	51	
6d	KOH (3 N), CH ₃ OH, \triangle T	11 _c	72	

Table 2. ¹³C-NMR data (100.6 MHz, CDCl₃, δ, *J* in Hz) for heterocycles **9** and **11**

The different outcome of the acidic hydrolysis of **6b** (to **9 b)** and the fluoride-induced desilylation **of 6c** (to **11 b)** suggests that in the former case enol **8b** is formed primarily which then tautomerizes to ketone **9b.** In the latter case, enolate **10 b** is generated which subsequently rearranges to furnish **llb.** In fact, when enolate **10b** is formed from **9b** (NaOMe/MeOH), compound **11 b** is obtained again in **57%** yield. However, an analogous treatment of **9a** does not furnish any **11 a;** only unspecified decomposition takes place to a small extent.

The mechanism of the skeletal rearrangement of enolates **10b,c** is as yet a matter of speculation. Two tentative pathways are depicted in Scheme 3.

Figure 1. ORTEP plot **of 11 b.** Ellipsoids of thermal vibration represent a 33% probability. See Table 4 for selected bond lengths and angles. The five-membered ring is planar (deviations of individual atoms from the least-squares plane are ≤ 0.017 Å). The five-membered and three-membered rings include an angle of 101.7°

Figure 2. ORTEP plot of **14.** Ellipsoids of thermal vibration rep-Figure 2. ORTEP plot of 14. Ellipsoids of thermal vibration represent a 33% probability. Torsion angles $\lceil \frac{3}{2} \rceil$ in the perhydro-1,5resent a 33% probability. Torsion angles $\lceil \frac{30}{10} \rceil$ in the perhydro-1,5-
diazocine ring: C1 - C2 - C3 - N2, -42.7; C2 - C3 - N2 - C6,
-12.2; C3 - N2 - C6 - C7, -42.2; N2 - C6 - C7 - C8, 115.6; C6 - $C7-C8-N1, -43.2; C7-C8-N1-C1, -13.3; C8-N1-C$ $C2, -38.4; N1 - C1 - C2 - C3, 113.3$

Valence isomerization of 1-Dewar-pyridines to azaprismanes has been observed before under photochemical, but never under thermal conditions¹¹⁾. We have found, that 3oxy-1-Dewar-pyridines **6a** (2-Me instead of 2-H), **6b,** and **6d** do not isomerize in boiling toluene, and that upon irradiation at $\lambda = 300$ nm only unspecified decomposition takes place. Nevertheless, formation of azaprisman-olate **15** from **10** could be feasible as a Homo-Michael-type reaction. Retro-aldol-like reaction of **15** would lead to **17,** which is expected to be protonated immediately and to undergo a spontaneous isomerization of cyclopropanone to 2-oxallyl cation. Compounds of type **19** with CH instead of N are known to undergo a rapid [1,4] rearrangement with inversion of configuration at the migrating center (2) . In our case, this would indeed lead to **11** with an *exo-6* substituent.

An alternative reaction pathway includes **16,** which could be formed by a $[2 + 2]$ cycloreversion from azaprismane Scheme 3

15 or perhaps directly from **10.** Rearrangement of **16** as indicated, ring-opening of the resulting cyclopropanolate **18,** and protonation of **20** would again lead to **11.**

11

This work was supported by the Fonds der Chemischen Industrie at Kaiserslautern and the National Cancer Institute *of* the *NIH* (2ROCA16903) at Utah. We also thank *NATO* for a grant (880399), which greatly facilitated the collaboration between the research groups **of G.M.,** M.R., and **P.J.S.**

Experimental

NMR: CDCl₃ as solvent, TMS as internal standard; Varian EM 390 ('H, 90 MHz), Bruker AM 400 **('H,** 400 MHz; l3C, 100.6 MHz). 390 (¹H, 90 MHz), Bruker AM 400 (¹H, 400 MHz; ¹³C, 100.6 MHz).
– IR: Perkin-Elmer 397. – Elemental analyses: Perkin-Elmer EA – IR: Perkin-Elmer 397. – Elemental analyses: Perkin-Elmer EA
2400. – X-ray diffraction: Enraf-Nonius CAD4. – Melting points $2400. - X$ -ray diffraction: Enraf-Nonius CAD4. $-$ Melting points are corrected. $-$ Column chromatography: Merck Lobar columns (LiChroprep SI 60, $40-63$ µm, size A and B). $-$ The synthesis of **6a-d** has been reported⁴⁾.

2,3,4- Tri-tert-butyl-l-azabicycIo(2.2.O/hex-2-en-5-one **(9a)**

Method *A:* Compound **6a** (0.278 **g,** 0.76 mmol) is dissolved in a 3 **N** solution of KOH in methanol (2 ml). After stirring for 1 h (precipitation of potassium benzoate starts after a few minutes), H₂O (5 ml) is added, and the mixture is extracted with ether (2 \times 10 ml). The united organic extracts are washed with **H20** *(5* ml), dried ($MgSO₄$), and purified by column chromatography (petroleum ether/ether, 5:1) to give **9a** (0.125 g, 62%) as a colorless oil. $- IR$ (film): $\tilde{v} = 1775 \text{ cm}^{-1}$ (C=O), 1612 (C=C). - ¹H NMR (400) **MHz**): $\delta = 1.12, 1.20, 1.21$ (each s, 9H, *t*Bu), 3.75 and 3.91 (AB system, $|^{2}J| = 16.8$, CH₂).

> $C_{17}H_{29}NO$ (263.4) Calcd. C 77.51 **H 11.10** N 5.32 Found C 77.1 **H** 11.1 N 5.2

Method B: A solution of methyllithium in ether (1.6 M, 0.6 ml) is added at -78° C to 6a (0.345 g, 0.94 mmol) in THF (10 ml). After **1** h at this temp., the reaction is quenched with NH4Cl in water (lo%, **1** ml), the mixture is brought to room temp., concentrated at 12 Torr to a volume of 3 ml, and extracted with petroleum ether $(3 \times 10 \text{ ml})$. The combined organic layers are dried (MgSO₄) and purified as described above (method A) to give **9a** (0.138 **g,** 56%).

2,3,4- Tri-tert-butyl-endo-6-phenyl-i-azabicyclo[2.2.0]hex-Z-en-Sone **(9b):** To a solution of **6b** (0.289 g, 0.64 mmol) in acetone (5 ml) is added hydrochloric acid (0.001 M, 0.5 ml). After stirring for 8 h, a solution of $Na₂CO₃$ in water (10%, 2 ml) is added. Extraction with ether (2 \times 10 ml), drying (MgSO₄), and evaporation of the solvent at 12 Torr leaves a yellow oil to which petroleum ether (1.5 ml) is added at -30° C. The yellowish solid thus formed is isolated and washed with cold petroleum ether until it is nearly colorless: 0.124 g (58%) of **9b**, m.p. 94°C. - IR (KBr): \tilde{v} = 1770 cm⁻¹ (C=O), 1605 (C=C). $-$ ¹H NMR (90 MHz): $\delta = 0.70$, 1.22, 1.26 (each **s,** 9H, tBu), 5.18 **(s,** lH, 6-H), 7.10-7.40 (m, 5H).

 $C_{23}H_{33}NO$ (339.5) Calcd. C 81.37 H 9.80 N 4.13 Found C 80.9 H 9.7 N 4.3

f,3,5-Tri-tert-butyl-exo-6-phenyl-2-azahicyclo[3.l .O]hex-2-en-4 one **(11 b)**

a) *From* 6c: To a solution of 6c (0.536 g, 1.08 mmol) in CH_2Cl_2 (5 ml) is added caesium fluoride $(0.167 \text{ g}, 1.10 \text{ mmol})$ in CH₃CN (2.5 ml). After stirring for 24 h, $H₂O$ (5 ml) is added. Extraction with ether $(2 \times 10 \text{ ml})$, drying (MgSO₄), and column chromatography (petroleum ether/ether, 10: 1) yields a yellow oil, which is dissolved in petroleum ether. At -78° C, yellow crystals of **11b** (0.188 g, 51%) are obtained, m.p. 91 °C. - IR (KBr): $\tilde{v} =$ (0.188 g, 51%) are obtained, m.p. 91°C. - IR (KBr): $\tilde{v} = 1700 \text{ cm}^{-1}$ (C=O), 1635 cm⁻¹ (C=N). - ¹H NMR (90 MHz): $\delta =$ 1.23, 1.28, 1.32 (each **s, 9H,** tBu), 2.20 **(s,** lH, **6-H),** 7.06-7.60 (m, 5H). $C_{23}H_{33}NO$ (339.5)

Calcd. C 81.37 H 9.80 N 4.13 Found C 81.3 H 9.9 N 4.0

b) *From* **9b:** To a solution of **9b** (0.124 g, 0.37 mmol) in methanol (2 ml) **is** added a 1 M solution of sodium methoxide in methanol (0.04 ml). Aftcr 2 h, the yellow solution is filtered over silica gel $[20 \text{ g}, \text{elution with other (5 ml)}]$, then separated by column chromatography (petrolcum cther/ether, 10: 1) *to* give **11 b** (0.071 g, 57%), m.p. 91 "C.

1.3,5,exo-6-Tetra-tert-butyl-2-azabicyclo[3.1 .Ojhex-2-en-l-one **(llc):** To a solution of KOH in methanol (3 N, *5* ml) is added **6d** (0.460 **g,** 0.97 mmol). The suspension is heated at reflux for 3 h, and after cooling the resulting yellow solution is extracted with pentane $(3 \times 10 \text{ ml})$. The combined organic layers are washed with H₂O (5 ml) and dried **(MgS04).** Purification by column chromatography (petroleum ether/ether, 5: **1)** and Kugelrohr distillation at 100°C (oven temp.)/0.3 mbar yields **llc** (0.220 g, 72%) as a yellow oil. - IR (film): $\tilde{v} = 1710 \text{ cm}^{-1}$ (C=O), 1630 (C=N). - ¹H NMR (90) MHz): $\delta = 0.40$ (s, 1H, 6-H), 1.10 (s, 18H, 2 \times *t*Bu), 1.24 (s, 18H,

 $2 \times t$ Bu).
C₂₁H₃₇NO (319.5)

Calcd. C 78.94 H 11.67 N 4.38

Found C 79.1 **H** 11.2 N 4.2

(1a,41,701,1Oa)-4,S,6,10,f 1,12-Hexa-tert-butyl-1,7-diazatricyclo- [8.2.0.04.7/dodeca-S,f f-diene-2,8-dione (14): To a solution of **7a** (0.228 g, 0.62 mmol) in THF (10 ml), methyllithium in cther (1.6 M, 0.4 ml) is added at -78 °C. After 1 h at this temp., the reaction is quenched with aqueous **NH4CI** (10% solution, 1 ml). Workup as described for the synthesis of **9a** (method B) and recrystallization from ether yields 14 (0.086 g, 56%) as colorless crystals, m.p. 306 °C. - IR (KBr): $\tilde{v} = 1648 \text{ cm}^{-1}$. - ¹H NMR (400 MHz): $\delta =$ 1.17, 1.35, 1.40 (each s, 18H, *tBu), 2.85/2.97* (AB system, \vert ²J \vert = 13.7 Hz). $-$ ¹³C NMR: δ = 28.9/31.3/32.7 (each q, *CMe₃*), 32.9/ 34.4/38.5 (each **s,** CMe3), 35.8 [t. COCH2, 'J(C,H) = 127.51, 85.5 **eV):** m/z (%) = 527 (100) [M⁺]. $(N-C_{so}3)$, 139.3 (NC = C), 154.0 (NC = C), 165.2 (C = O). - MS (70)

> $C_{34}H_{58}N_2O_2$ (526.9) Calcd. C 77.51 H 11.10 N 5.32 Found *C* 76.2 H 11.0 N 5.1

X-Ray Crystal Structure Analysis of 11 b¹³⁾: *Crystal data:* $C_{23}H_{33}NO$, molecular mass 339.5, triclinic, space group *PT*, $a =$ 90.37(2), $\gamma = 114.10(2)^{\circ}$, $Z = 2$, $d_{\text{calc}} = 1.10$ g cm⁻³. - *Data collection:* Crystal size $0.60 \times 0.45 \times 0.15$ mm, monochromatized Mo- K_{α} radiation, 2353 independent reflections in the range 2.0 \leq $\Theta \leq 21.5^{\circ}$, $\omega/2\Theta$ scan, scan width $(1.25 + 0.35 \tan \Theta)^{\circ}$. - *Structure solution and rejinement:* Structure solution by direct methods (SHELXS), refinement **14)** by a full-matrix least-squares method. **H** 8.820(2), $b = 10.195(4)$, $c = 13.023(4)$ Å, $\alpha = 104.14(3)$, $\beta =$

Table 3. Positional and thermal parameters for **11 b** in the crystalline state. Standard deviations are in parentheses

Atom	x/a	y/b	Z/c	Ueg
O	0.5530(6)	0.4836(5)	0.7932(5)	0.089(2)
N	0.2212(5)	0.5366(5)	0.7031(4)	0.041(2)
C ₁				
	0.1233(6)	0.3886(6)	0.7216(4)	0.032(2)
C2	0.3792(7)	0.5777(6)	0.7250(5)	0.041(2)
C ₃	0.4124(6)	0.4667(6)	0.7622(5)	0.041(2)
C ₄	0.2495(6)	0.3411(6)	0.7653(5)	0.036(2)
C5	0.1463(6)	0.4095(6)	0.8413(4)	0.035(2)
C ₆	$-0.0330(7)$	0.3086(6)	0.6380(4)	0.040(2)
C7	$-0.1475(8)$	0.1502(8)	0.6343(6)	0.060(3)
C ₈	$-0.1309(7)$	0.4052(8)	0.6581(5)	0.059(2)
C9	0.0275(8)	0.3070(8)	0.5285(5)	0.062(3)
C10	0.5116(7)	0.7220(7)	0.7132(5)	0.049(2)
C11	0.5970(10)	0.8200(8)	0.8217(7)	0.078(3)
C12	0.6329(10)	0.6893(9)	0.6416(7)	0.087(3)
C13	0.4285(10)	0.8037(8)	0.6655(7)	0.089(3)
C14	0.2562(7)	0.1919(6)	0.7537(5)	0.048(2)
C15	0.0950(9)	0.0617(7)	0.7637(7)	0.079(3)
C ₁₆	0.3123(10)	0.1480(8)	0.6476(7)	0.082(3)
C17	0.3856(9)	0.2062(8)	0.8424(7)	0.083(3)
C18	0.0346(7)	0.3321(6)	0.9130(4)	0.038(2)
C ₁₉	$-0.1362(7)$	0.2799(7)	0.9025(5)	0.047(2)
C ₂₀	$-0.2298(B)$	0.2150(7)	0.9758(5)	0.058(2)
C ₂₁	$-0.1506(9)$	0.2090(8)	1.0637(5)	0.067(2)
C ₂₂	0.0179(9)	0.2667(9)	1.0795(5)	0.080(3)
C23	0.1097(8)	0.3310(8)	1.0058(5)	0.068(3)

Table 4. Selected bond lengths and angles of **11 b.** Standard deviations are in parentheses

atoms were localized in a ΔF map, but only 21 out of 33 were refined (with *B* fixed). With 1696 reflections $[I > 3\sigma(I)]$ and 358 variables refinement converged at $R = 0.077$, $R_w = (\Sigma \Delta^2 F / \Sigma F_0^2)^{1/2}$ $= 0.085$ (shift/error ratio ≤ 0.88 , residual electron density ≤ 0.60). Positional and thermal parameters of non-hydrogen atoms are given in Table 3, selected bond distances and angles in Table 4.

Table 5. Positional and thermal parameters for **14** in the crystalline state. Standard deviations are in parentheses

Atom	x/a	y/b	Z/c	Ueq
01	$-0.0533(7)$	0.0304(3)	0.7775(2)	0.049(2)
02	0.2886(6)	0.1786(4)	0.7362(2)	0.048(2)
N ₁	0.0421(7)	0.1222(4)	0.8461(3)	0.031(2)
N ₂	0.0602(6)	0.2035(4)	0.6973(2)	0.025(2)
C1	$-0.0481(9)$	0.1029(5)	0.7979(3)	0.031(2)
C ₂	$-0.1460(9)$	0.1685(5)	0.7706(3)	0.035(2)
C ₃	$-0.1058(8)$	0.1941(5)	0.7041(3)	0.031(2)
C ₄	$-0.0909(8)$	0.1206(5)	0.6582(3)	0.028(2)
C ₅	0.0533(8)	0.1376(5)	0.6504(3)	0.031(2)
C6	0.1643(8)	0.2066(5)	0.7407(3)	0.028(2)
C7	0.1328(9)	0.2596(5)	0.7982(3)	0.036(2)
C8	0.1262(9)	0.2023(5)	0.8560(3)	0.037(2)
C9	0.2583(4)	0.1465(6)	0.8706(3)	0.034(2)
C10	0.1731(9)	0.0787(5)	0.8657(3)	0.035(2)
C ₁₁	$-0.1872(10)$	0.2703(5)	0.6815(3)	0.042(2)
C12	$-0.1549(11)$	0.3496(6)	0.7195(4)	0.055(3)
C13	$-0.3577(10)$	0.2563(6)	0.6805(4)	0.054(3)
C ₁₄	$-0.1434(11)$	0.2927(6)	0.6151(4)	0.055(3)
C15	$-0.1928(10)$	0.0540(5)	0.6364(4)	0.043(3)
C16	$-0.3250(10)$	0.0395(6)	0.6799(4)	0.051(3)
C17	$-0.1134(11)$	$-0.0302(5)$	0.6320(4)	0.054(3)
C18	$-0.2655(11)$	0.0749(6)	0.5728(4)	0.054(3)
C19	0.1803(10)	0.1196(5)	0.6067(4)	0.045(3)
C20	0.2706(11)	0.0478(6)	0.6286(4)	0.062(3)
C ₂₁	0.2728(10)	0.1980(6)	0.5987(4)	0.054(3)
C22	0.1114(11)	0.1001(7)	0.5415(4)	0.063(3)
C23	0.0624(10)	0.2522(5)	0.9130(3)	0.045(3)
C ₂₄	0.1498(13)	0.3300(6)	0.9269(4)	0.072(3)
C ₂₅	0.0660(10)	0.1952(6)	0.9701(3)	0.052(3)
C ₂₆	$-0.1007(11)$	0.2758(6)	0.9019(4)	0.058(3)
C ₂₇	0.4199(9)	0.1619(6)	0.8829(3)	0.044(3)
C28	0.5103(10)	0.0965(7)	0.8501(4)	0.063(3)
C29	0.4699(10)	0.2466(7)	0.8570(4)	0.057(3)
C30	0.4612(11)	0.1631(7)	0.9516(4)	0.064(3)
C ₃₁	0.1738(10)	$-0.0154(5)$	0.8820(4)	0.044(3)
C32	0.2206(13)	$-0.0675(6)$	0.8264(5)	0.067(3)
сзз	0.2780(12)	$-0.0331(6)$	0.9359(4)	0.065(3)
C ₃₄	0.0188(11)	$-0.0406(6)$	0.9012(4)	0.054(3)

X-Ray Crystal Structure Analysis of **14"':** *Crystal data:* $C_{34}H_{58}N_2O_2$, molecular mass 526.9, monoclinic, space group $P2_1/n$, $a = 9.068(3)$, $b = 15.917(5)$, $c = 21.879(6)$ Å, $\beta = 91.00(4)$ °, $\mathbb{Z} =$

4, $d_{calc} = 1.11$ g cm⁻³. - *Data collection:* Crystal size 0.70×0.70 \times 0.35 mm, monochromatized Mo- K_{α} radiation, 3372 independent reflections in the range $2.0 \le \Theta \le 21.0^{\circ}$, $\omega/2\Theta$ scan, scan width $(1.30 + 0.35 \tan \Theta)$ ^o. - *Structure solution and refinement*¹⁴⁾*: Struc*ture solution by direct methods (MULTAN), refinement by a fullmatrix least-squares method. Methylene H atoms were localized in a *AF* map, all **tBu H** atoms were calculated in fully staggered **po**sitions; all H atoms were included in the structure factor calculations, but not refined. With 2363 reflections $[I > 3\sigma(I)]$ and 343 variables, refinement converged at $R = 0.091$, $R_w = (\Sigma \Delta^2 F / \Sigma_0^2)^{1/2}$ $= 0.102$ (shift/error ratio ≤ 0.08 , residual electron density ≤ 0.43). For positional and thermal parameters see Table 5.

CAS Registry Numbers

6a: 132911-05-8 / **6b:** 132911-06-9 / **6c:** 132911-07-0 / **6d:** 132931- 08-1 / **7a:** 132911-09-2 / **9a:** 132911-00-3 / **9b:** 132911-01-4 / **llb:** 132911-02-5 / **11~:** 132911-03-6 / **14:** 132911-04-7

- **birthday.**
^{1a)} E. J. Corey, J. Streith, *J. Am. Chem. Soc.* **86** (1964) 950. -
^{1b)} H. Furrer, *Chem. Ber.* **105** (1972) 2780. ^{Ic)} R. C. DeSelms, **W.** R. Schleigh, *Tetrahedron Lett.* 1972, 3563. - **Id)** E. F. **V.** Scriven in *Comprehensive Heterocyclic Chemistry* **(A.** M. Katritsky, C. **W.** Rees, **Eds.),** vol. 2, part 2A, p. 305, Pergamon Press, Oxford 1984.
- *) H. Hogeveen, D. M. **Kok,** J. *Org. Chem.* **47** (1982) 997.
- **3,** M. Regitz, G. Michels, *Chem. Ber.* **123** (1990) 927.
- ⁴¹*G.* Maas, M. Regitz, R. Rahm, J. Schneider, P. J. Stang, C. M. Crittell, *J. Chem.* **SOC..** *Chem. Commun.* **1990,** 1456.
- *S.* **S.** Chatterjee, **A.** Shoeb, *Synthesis* **1973,** 153.
- **⁶¹A.** Morimoto, T. Okutani, U. Masuda, *Chem. Phurm. Bull.* 21 (1973) 228.
- ') H. Wingert, *Dissertation,* Univ. Kaiserlautern, 1986.
- *) *S.* Arenz, *Dissertation,* Univ. Kaiserslautern, 1989.
- ⁹) The SiiPr₃ group ranks among the most stable OH protecting groups in both acid- and base-catalyzed solvolysis: L. H. Sommer, *Stereochemistry, Mechanism and Silicon,* p. 127, McGraw Hill, New York 1965.
- **lo)** *G.* Maier, **S.** Pfriem, **U.** Schafer, *R.* Matusch, *Angew. Chem.* 90 (1978) 552 *Anaew. Chem.. Int. Ed. End.* **17** (1978) 520.
- ¹¹⁾ U. Hees, U.-J. Vogelbacher, G. Michels, M. Regitz, *Tetrahedron*
- 45 (1989) 3115.
^{12a} H. E. Zimmerman, D. S. Crumrine, D. Döpp, P. S. Huyffer,
J. Am. Chem. Soc. 91 (1969) 434. ^{12b} T. M. Brennan, R. K.
Hill, *J. Am. Chem. Soc.* 90 (1968) 5614.
- ¹³⁾ Further crystal structure data have been deposited at Fachinformationszentrum Karlsruhe, Gesellschaft fur wissenschaftlichtechnische Information mbH, D-7514 Eggenstein-Leopoldshafen 2, FRG. Inquiries should be accompanied by the depository **number** CSD-55085, thc names **of** the authors and the reference to this publication.
- **14)** The program system *Structure Determination Package* (Enraf-Nonius, Delft, The Netherlands) was used.

 $[28/91]$

^{*} Dedicated to Professor *Jiirgen Sauer* on the occasion of his 60th